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Abstract—This paper introduces Network3, a novel
blockchain-oriented protocol designed for decentralized,
authenticated, anonymous, and reliable data transmission and
computation. Responding to the inherent trustworthy challenges
of the mainnet, Network3 integrates an efficient anonymous
certificateless signcryption (CLSC) algorithm, a data correctness
verification mechanism, an IP anti-tracking measure, and
a decentralized reliable federated learning (FL) framework.
The CLSC algorithm ensures identity authentication and
secure data sharing under anonymity. The data verification
mechanism addresses potential data inaccuracies, blending
homomorphic encryption, secret sharing, and Reed-Solomon
coding. The IP anti-tracking feature facilitates completely
anonymous communication. Moreover, Network3 provides
a decentralized AI framework by handling the intractable
challenges encountered by the existing FL technologies. By
bolstering the capabilities of mainnet and integrating unique
features such as anonymous communication, privacy-preserving
authentication, decentralized AI, Network3 heralds notable
progress in blockchain ecosystems. It paves the way for
improvements in decentralization, anonymity, intelligence,
and reliability, fostering an environment conducive to future
advancements.

Index Terms—Web3.0, Data Transmission, Computation, Fed-
erated Learning, Signcryption, Decentralization, Anonymity, In-
telligence.

I. INTRODUCTION

IN the emerging era of Web3.0, Ethereum leads the way as
an open-source, blockchain-based platform, enabling de-

velopers to craft and deploy smart contracts and decentralized
applications (dApps). Despite the transformative potential of
these features, the inherent scalability and security challenges
associated with most mainstream blockchain mainnets impede
wider adoption [1]–[3]. Various projects like Filecoin [4],
Arweave [5], Sia [6], and Flux [7] have addressed these issues
from the standpoints of decentralized storage and computation.
However, a gap still exists in the area of decentralized commu-
nication for reliable data transmission. This is critical because
data exchange impacts the reliability of transmitted transac-
tions, the security of communicating parties, and the overall
user experience within the blockchain ecosystem. Therefore,
developing a decentralized data transmission protocol that
enhances mainstream blockchain mainnets’ scalability and
security is of crucial significance.

This paper presents Network3, a novel Layer2 protocol de-
signed explicitly for decentralized, authenticated, anonymous,
intelligent, and reliable data transmission and computation.
The driving force behind this research lies in the intrinsic

need to advance mainstream blockchain mainnets’ capabilities,
allowing for larger-scale, more secure applications, while
simultaneously preserving anonymity and data integrity in an
ever-increasing data-driven society.

Network3 responds to a series of stringent requirements.
It aims to ensure seamless and secure data transmission,
preserve anonymity, resist diverse attack vectors, and tackle
the paramount challenge of inaccurate data from receivers.
Moreover, it seeks to improve upon existing schemes in terms
of computational efficiency and communication costs, both
vital for real-world deployment.

Current state-of-the-art protocols and algorithms fall short in
addressing these needs in a comprehensive manner. Most fail
to achieve a harmonious balance between anonymity and de-
centralization, or they struggle with efficiency and robustness
against common attacks [8]–[11]. Others lack mechanisms
to validate the accuracy of received data [12]. Therefore, a
new approach that tackles these problems holistically, like
Network3, is critically needed in the crypto-ecosystem.

Network3 revolves around key technologies, including an
efficient anonymous certificateless signcryption (CLSC) algo-
rithm, a decentralized reputation mechanism, and an IP anti-
tracking measure. The anonymous CLSC algorithm offers a
unique blend of identity authentication and secure data sharing
under anonymous conditions, backed by thorough security
and performance analysis. The decentralized data correctness
verification mechanism, infused with homomorphic encryp-
tion, secret sharing, and Reed-Solomon coding, provides a
solution to potential inaccuracies in received data. The IP anti-
tracking measure ensures a fully anonymous data transmission
experience.

The contributions of Network3 are summarized as follows.
• Firstly, we propose a highly efficient anonymous CLSC

algorithm for authenticated transmission and offer a de-
tailed algorithm construction with security and perfor-
mance analysis, underscoring the algorithm’s effective-
ness and practicality.

• Secondly, we devise a decentralized rating-based data
correctness verification mechanism to address the issue
of data inaccuracies at the receiving end.

• Thirdly, we design a novel IP anti-tracking mechanism
to achieve completely anonymous data transmission and
protect the inherent freedom for the ubiquitous interaction
and cooperation.

• Finally, we present a groundbreaking decentralized feder-
ated learning framework, thoughtfully designed to tackle
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the core challenges associated with realizing practical and
dependable decentralized AI capabilities.

These innovations promise to significantly augment mainnet
capabilities and contribute to the ongoing discussion around
blockchain openness, security, anonymity, and intelligence.
Moreover, the achieved features — anonymity, authenticity,
reliability, and decentralized intelligence — set Network3
apart as a groundbreaking solution in the realm of Layer2
protocols.

The remainder of this paper is organized as follows: Section
II provides a detailed introduction of the proposed CLSC-
enabled efficient anonymous authentication. Section III de-
scribes the data correctness mechanism. Section IV delves
into the IP anti-tracking mechanism. Section V incorporates
edge computing to facilitate outsourced computation. Section
VI demonstrates the decentralized FL framework. Finally,
Section VII concludes the paper, providing an overview of
the innovations and features achieved by Network3.

II. EFFICIENT ANONYMOUS AUTHENTICATION

A. Preliminary

1) Bilinear Pairing: Let GF(p) denote a finite field, where
p is a large prime number. We consider an elliptic curve
Ep(a, b) over GF(p), which can be defined as the set of
ordered pairs (x, y) ∈ GF(p)×GF(p) that fulfill the condition
y2 ≡ x3 + ax + b (mod p), given that a, b ∈ GF(p) and
4a3 + 27b2 ̸≡ 0 (mod p). This leads to the construction of
an additive cyclic group, denoted G1, and a multiplicative
cyclic group, G2, both of which have the prime order p.
These groups are constituted of all points residing on the
elliptic curve, complemented by the point at infinity. A random
generator of G1 is designated as P . We define a bilinear map
e : G1 × G1 → G2 (known as a type-1 pairing) that adheres
to the following three properties:

• Bilinearity: For any X,Y ∈ G1 and any a, b ∈ Z∗
p, it

holds that e(aX, bY ) = e(X,Y )ab.
• Non-degeneracy: If we designate 1G2 as the identity

element of G2, it should be ensured that e(X,Y ) ̸= 1G2

for any X,Y ∈ G1.
• Computability: For any X,Y ∈ G1, the value e(X,Y )

can be efficiently computed.
2) Security Assumptions: Two fundamental problems play

a crucial role in ensuring the robustness of Network3 protocol.
These problems, known as the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP) and the Elliptic Curve Computational
Diffie-Hellman Problem (ECCDHP), are outlined below:

• ECDLP: Given an elliptic curve Ep(a, b) over a finite
field GF(p), and two points P,Q ∈ G1, the ECDLP is
to find an integer x such that Q = xP if one exists.
It is conjectured that no efficient algorithm can solve
this problem, making it the foundation of the security in
elliptic curve cryptography. The intractability of ECDLP
ensures that, even if an attacker knows P and Q, they
cannot feasibly compute the integer x.

• ECCDHP: For an elliptic curve Ep(a, b) over a finite
field GF(p), and given P, aP, bP ∈ G1, the ECCDHP
asks for the computation of the point abP . In the realm

of cryptographic systems, ECCDHP is considered com-
putationally hard, assuming the hardness of the ECDLP.
In simpler terms, if one can solve ECCDHP efficiently,
then they can also solve ECDLP efficiently, which is
conjectured to be infeasible.

B. Algorithm Syntax

The foundational cryptographic underpinning of the effi-
cient anonymous authentication protocol in Network3 is the
avant-grade certificateless signcryption, which simultaneously
provides encryption and signature, thereby ensuring data con-
fidentiality, integrity, authentication. To bolster the protocol’s
efficiency, we incorporate the concept of online/offline en-
cryption into the signcryption operations. The key solution
to provide immaculate identity anonymity for mainstream
blockchain mainnet users lies in the construction of a one-
time anonymized public key for both communicating parties
during each interaction. Attackers are incapable of linking
the anonymized public key to any real identity. A smart
contract, denoted as SCKGC , supplants a centralized KGC
to produce public parameters, generate partial private keys,
and distribute them to the corresponding users. Any legitimate
user can query public parameters. Specifically, the anonymous
authentication scheme is composed of the following eight
probabilistic polynomial time (PPT) algorithms.

• Setup(1k). The setup algorithm is run by the smart
contract SCKGC deployed on mainstream blockchain
mainnets. It takes as input the security parameter k, and
outputs the master secret key MSK = s and system pa-
rameter param. For simplicity, the public parameters are
omitted in the descriptions of the subsequent algorithms.

• PPKGen(ID,MSK). This algorithm is run by smart
contract SCKGC to create partial private keys for main-
stream blockchain users. Taking as input a user’s identity
ID ∈ {0, 1}∗ and the master secret key MSK, the
algorithm outputs a partial private key PPKID.

• KeyGen(PPKID). The algorithm is run by the user.
Given a partial private key PPKID, this algorithm out-
puts the public key PKID, private key SKID, and user
identity tag TagID.

• Anonymization(PKA, PKB). The algorithm is run
by the data sender. Given the public key PKA of the
sender and the public key PKB of the receiver, this
algorithm outputs the anonymized public key AKA and
AKB of both communicating parties.

• OffSign(SKA, PKA, PKB , AKB). The algorithm is
performed by the data sender IDA in an offline mode.
Specifically designed for blockchain users with con-
strained resources, this phase enables offloading of com-
putational tasks to reliable offline equipment. Taking as
input the sender’s private key SKA and public key PKA,
and the receiver’s public key PKB , this algorithm outputs
an offline signcryption result δ. Note that the transmitted
message is not required in this phase.

• OnSign(δ,m, TagA, PKB , AKB). The algorithm is run
by the data sender IDA. Given a message m, an offline
signcryption result δ, the identity tag TagA, the receiver’s
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public key PKB , and the receiver’s anonymized public
key AKB , this algorithm outputs a ciphertext σ.

• KeyRec(MatA,MatB). The algorithm is run by the
smart contract SCKGC to recover the anonymized public
key AKB for the receiver IDB . Given the associated
materials MatA and MatB , provided by the sender
and the receiver respectively, this algorithm verifies the
validity of AKB before transmitting it to IDB .

• Unsigncryption(σ,AKA, AKB). The algorithm is run
by the data receiver IDB . Given the ciphertext σ, the
sender’s anonymized public key AKA, and the receiver’s
anonymized public key AKB , this algorithm outputs the
exchanged message m if the verification is successful;
otherwise, it outputs a failure symbol ⊥.

C. Concrete Construction

In this section, we introduce the concrete construction of
the proposed anonymous authentication scheme.

• Setup(1k). Given the security parameter k, two cyclic
groups (G1,G2) are chosen, where G1 represents an
additive group of a large prime order p > 2k and
G2 corresponds to a multiplicative group of the iden-
tical prime order p. A mapping is acknowledged, such
that e : G1 × G1 → G2. P , a random generator in
G1, is selected and g = e(P, P ) is calculated. The
system utilizes four hash functions as follows: H1 :
{0, 1}∗ → Z∗

p, H2 : G1 → Z∗
p, H3 : G2 → {0, 1}n,

and H4 : {0, 1}n × G2 × G1 × G2 → Z∗
p, where n

denotes the number of bits within the message to be
transmitted. The smart contract SCKGC then randomly
selects s ∈ Z∗

p as the master secret key MSK, and
defines the system public key MPK = s · P . Fol-
lowing this, it publishes system parameters Param =
{G1,G2, e, n, p, P,MPK, g,H1, H2, H3, H4} on main-
stream blockchain mainnets and privately stores MSK.

• PPKGen(ID,MSK). The data sender computes A1 =
IDA + IDA · MPK and A2 = IDA · P , and sends
{A1, A2, t0} to the smart contract SCKGC through public
channel, where ti, i ∈ N is the current timestamp. Upon
receiving the message, SCKGC is able to get the real
identity of the data sender by means of IDA = A1−s·A2.
Subsequently, SCKGC calculates PPKA = s ·H1(IDA)
and returns A3 = PPKA+s·A2 to the data sender, where
PPKA is the generated partial private key.

• KeyGen(PPKID). Upon receiving A3, the data sender
calculates the partial private key through PPKA = A3−
IDA · MPK. Then, he/she verifies the accuracy of the
partial private key generation by assessing the validity
of the equation e(PPKA, P ) = e(s · H1(IDA), P ) =
e(H1(IDA),MPK). The data sender accepts PPKA if
the equation holds; otherwise, he/she invokes the smart
contract SCKGC for regeneration.
Afterwards, the sender selects a random integer aA ∈ Z∗

p

and computes A4 = PPKA + aA. Following this, the
public key is calculated as PKA = A4 · P ∈ G1.
Moreover, the sender chooses another secret value bA ∈
Z∗
p, calculates A5 = bA + H2(PKA) and the identity

tag TagA = gA
−1
5 . Finally, the secret key is generated

as SKA = A−1
5 · A−1

4 · P . The secret values aA, bA
along with the secret key SKA are securely stored in
local trusted storage, while the public key PKA and
user identity tag TagA are published on mainstream
blockchain mainnets.

• Anonymization(PKA, PKB). Given the sender’s
public key PKA and the receiver’s public key PKB ,
the sender selects a random number θ ∈ Z∗

p to construct
the one-time anonymized public key AKA = (θ+H2(θ ·
PKB)) · PKA for the sender and AKB = (θ + H2(θ ·
PKA)) · PKB for the receiver. These keys, AKA and
AKB , provide temporary anonymity for the communi-
cating parties. Their embeddings within transactions are
openly published on the blockchain.

• OffSign(SKA, PKA, PKB , AKB). The sender selects
a random integer α ∈ Z∗

p and computes β = α(θ +
H2(θ · PKA)), r = gβ . In addition, it computes U =
α · AKB = α(θ + H2(θ · PKA))PKB and V = (θ +
H2(θ ·PKB))

−1SKA+H3(r) ·P . Finally, this algorithm
outputs an offline signcryption result δ = {β, r, U, V }.

• OnSign(δ,m, TagA, PKB , AKB). Upon receiving δ,
the sender computes c = m ⊕ H3(r). Furthermore, it
computes h = H4(m,TagA, AKB , r) and W = (β +
h)(θ+H2(θ ·PKB))

−1 ·A−1
4 ·P . Finally, the data sender

encapsulates the ciphertext σ = {c, U, V,W, t1} into a
transaction and publishes it on mainstream blockchain
mainnets.

• KeyRec(MatA,MatB). This algorithm aims to recover
the anonymized public key AKB for the receiver. Ini-
tially, the sender generates LA = (θ+H2(θ ·PKA)) ·P ,
L̂A = AKB + (θ + H2(θ · PKA))MPK, and submits
MatA = {LA, L̂A, t2} to the blockchain network. The
receiver then selects two random numbers ι, κ ∈ Z∗

p,
computes LB = κ · P , and L̂B = ι · B5 + κ ·
MPK. Following this, the receiver initiates a query
for the anonymized public key AKB by transmitting
MatB = {LB , L̂B , ι

−1SKB , t3} to the SCKGC smart
contract. After validating the freshness of the timestamp
t3, SCKGC calculates ι·B5 = L̂B−s·LB . In parallel, the
anonymized public key of the receiver can be recovered
by AKB = L̂A − s · LA. Subsequently, SCKGC verifies
the following equation:

e(ι ·B5 ·AKB , ι
−1SKB)

= e(B5(θ +H2(θPKA))PKB , SKB)

= e(B5(θ +H2(θPKA))B4 · P,B−1
4 B−1

5 P )

= e((θ +H2(θPKA)), P )

= e(LA, P ).

(1)

If this equation fails to hold, the algorithm outputs a
failure symbol ⊥ implying that the anonymized public
key AKB is incorrect. Otherwise, SCKGC calculates
AKB+s·LB and returns the result to the receiver. Finally,
the receiver can construct his/her anonymized public key
through AKB = AKB + s · LB − κ ·MPK.

• Unsigncryption(σ,AKA, AKB). The data receiver
searches for the corresponding transaction information
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based on the obtained anonymized public key AKB and
retrieves the ciphertext σ = {c, U, V,W, t1}. First, the
receiver calculates r through the following equation:

e(U,B−1
4 P ) = e(α(θ +H2(θ · PKA))B4P,B

−1
4 P )

= e(α(θ +H2(θ · PKA))P, P )

= e(βP, P )

= gβ = r.
(2)

Then, the receiver obtains the original message through
m = c⊕H3(r). Afterwards, the receiver can get the iden-
tity tag TagA of the sender according to the following
equation:

e(AKA, V −H3(r)P ) = e((θ +H2(θ · PKB)) · PKA,

(θ +H2(θ · PKB))
−1SKA)

= e(A4P,A
−1
4 A−1

5 P )

= e(P,A−1
5 P )

= gA
−1
5 = TagA.

(3)
Subsequently, the receiver could compute h =
H4(m,TagA, AKB , r) and verify whether r =
e(AKA,W ) holds according to the following equation:

e(AKA,W )g−h = e((θ +H2(θPKB))PKA,

(β + h)(θ +H2(θPKB))
−1A−1

4 P )g−h

= e(A4P, (β + h)A−1
4 P )g−h

= e(P, (β + h)P )g−h

= gβ+hg−h = r.
(4)

If this equation is valid, it validates that the r calculated
in Equation 2 is accurate, signifying that the message
m originates from the legitimate sender who has the
anonymized public key AKA. This further assures that
the message was not subject to any form of tampering
during transmission. However, if the equation does not
hold, the algorithm will output a failure symbol ⊥,
indicating a discrepancy.

The entire processes are illustrated in Fig. 1.

D. Security Analysis

In this section, we will discuss several potential strengths
and security features of the proposed authentication scheme.

• Anonymity & Confidentiality: The primary purpose of
anonymity is to conceal a user’s real identity, which our
scheme achieves. Despite the fact that an adversary can
capture the transmitted messages, they cannot infer the
true identity of the sender due to the use of anonymized
public keys and identity tags, which only the receiver can
interpret. Other blockchain users will only know that a
transaction has occurred between two anonymous users,
without knowledge of their actual identities. Additionally,
the transmitted data are kept private through the XOR
encryption, preventing data disclosure against eavesdrop-
ping.

• Resistance to KGC Compromised Attack: Traditional
anonymous certificateless schemes often feature a cen-
tralized KGC. These can be vulnerable to compromise,
leading to potential security risks. Our scheme replaces
the traditional KGC with a smart contract, which greatly
increases the difficulty of a successful attack by requir-
ing control of over 51% of the mainstream blockchain
ecosystem.

• Replay Attack Prevention: Our scheme defends against
replay attacks, where an adversary intercepts and re-
sends a signature, by incorporating timestamps into the
querying and signcryption processes. Every verifier needs
to check the timestamp’s validity, which limits the ad-
versary’s ability to trick the verifier with a previously
intercepted signature.

• Man-in-the-Middle Attack Defense: To prevent an ad-
versary from intercepting and altering all transmitted
messages, we implement secure encryption with elliptic
curves using LB submitted by the receiver. This ensures
that only the intended receiver, who knows the random
value κ, can decrypt the returned anonymized public key.
The underlying mathematical complexity is based on the
hardness of ECDLP.

• Forgery Attack Resistance: Given the security assump-
tion previously mentioned, the likelihood of an adver-
sary successfully forging a valid signature is negligible.
The receiver can accurately verify the result using the
anonymized public key provided by the smart contract
and the corresponding ciphertext, as demonstrated in the
unsigncryption algorithm.

• Protection Against Big Data Clustering Attack:
All transaction information is publicly visible on the
blockchain network, which can potentially be exploited
by adversaries to infer users’ real information. Our
scheme mitigates this risk by using one-time anonymized
public keys, preventing adversaries from associating mul-
tiple transactions with a specific user.

Therefore, the proposed scheme can successfully defend
against common attacks to ensure security and privacy in
blockchain transactions.

E. Performance Evaluation

In this section, we analyze the computation and commu-
nication cost of the proposed anonymous certificateless sign-
cryption scheme with those of Xiong [13], Zhou et al. [14],
Tseng et al. [15], Mandal et al. [16], and Xu et al. [17]. The
comparative results are shown in Table I. Since the dominating
factors in each schemes’ computational overheads are the
exponentiation operation, point multiplication operation, and
bilinear pairing operation, we can draw an intuitive conclusion
according to Table I that the proposed scheme presents higher
computation efficiency in comparison to its counterparts, es-
pecially in the signcryption phase. Additionally, our scheme
excels in terms of communication cost, leading to a reduction
in bandwidth usage and data transmission latency. These
distinct benefits underscore the innovative nature and valuable
contribution of Network3 protocol.
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Fig. 1. Anonymous authentication scheme processes.

Fig. 2. Computation Overheads of Different Schemes.

To offer a clear evaluation, we employ the highly-regarded
Charm library to gauge the execution time of key crypto-
graphic processes. Our tests are performed on a MacBook Pro
equipped with an Intel Core i7 @ 2.2 GHz, 16 GB DDR4,
and running on Mojave 10.14.6. For elliptic curve and pairing-
based operations, we opt for the MNT159 curve. The results,
averaged from 100 test runs, are presented in Table II. Based
on the data in Table I, we calculate the computational time
for all the examined schemes, as illustrated in Figure 2. No-
tably, Network3 displays remarkable signcryption efficiency in
comparison to other schemes, boasting a peak reduction rate
of 97%. Its unsigncryption time also stands out favorably. In
sum, these findings underscore the practicality and viability of
Network3.

III. DATA CORRECTNESS VERIFICATION MECHANISM

Malicious or selfish data senders might attempt to transmit
deceptive or counterfeit data to unsuspecting recipients. Even
more severe, toxic data can compromise the system’s normal
operation. Therefore, an efficient mechanism for verifying data
correctness is crucial. Such a mechanism empowers crypto
users to validate the data they receive and, if necessary, lodge
a complaint. Consequently, malicious data senders who behave
irresponsibly should face punitive measures. Network3 has
designed a decentralized, privacy-preserving mechanism for
verifying data correctness, which leverages the ratings given
to transmitted data by stakeholders in the blockchain network.
The specific procedures of this mechanism can be divided into
seven phases, which are outlined below.

A. Initialization
Upon discovering that the received data is incorrect, the

data receiver can activate the correctness verification contract,
denoted as SCCV , by submitting evidence to prove the in-
accuracy of the data received. The SCCV then assembles a
decentralized verification committee composed of m raters
by randomly issuing verification invitations to stakeholders
within the blockchain. In each iteration, the minimum number
of stakeholders are selected and contacted. For instance, in
the first iteration, m raters are contacted. If only x of them
respond, an additional (m − x) raters will be contacted in
the second iteration. Alternatively, the SCCV can broadcast
requests to all raters; however, this may result in redundant
replies as only m responses are needed. Upon the formation
of the verification committee, the SCCV disseminates the
evidence of data inaccuracy to each rater for decentralized
evaluation and rating.
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TABLE I
COMPUTATION AND COMMUNICATION COSTS OF THE ANONYMOUS AUTHENTICATION SCHEME

Schemes Signcrypt/Encrypt Unsigncrypt/Decrypt Ciphertext Size

Xiong [13] 4Tpair + 9Texp 9Tpair + 3Texp 4|G1|+ |G2| = 3104 bits

Zhou et al. [14] 2Tpair + 8Texp 7Tpair + 2Texp 4|G1|+ 2|G2| = 4128 bits

Tseng et al. [15] 2Thash + 5Tmul + 2Tpair + Texp 2Thash + 2Tmul + 2Tpair + Texp 2|Z∗
p|+ 3|G1|+ |G2| = 2904 bits

Mandal et al. [16] 12Thash + 11Tmul 9Thash + 3Tmul n+ 3|Z∗
p|+ 4|G1| = 2720 bits

Xu et al. [17] 3Thash + 3Tmul + 3Tpair 3Thash + 2Tmul + Tpair n+ |Z∗
p|+ 2|G1|+ |G2| = 2384 bits

Network3 Thash + Tmul Thash + Tmul + 3Tpair + Texp n+ 3|G1| = 1720 bits

∗ Thash, Tmul, Tpair, and Texp denote the running time of a hashing operation, a point multiplication operation in G1, a bilinear pairing
operation in G1, and an exponentiation operation in G2, respectively. n, |Z∗

p|, |G1|, and |G2| represent the length of the transmitted message,
the length of the element in Z∗

p, the length of the element in G1, and the length of the element in G2, respectively.
∗ Note that testers can employ the MIRACL library to measure the execution time of each invoked cryptographic operation. This allows them
to accurately determine computational overheads, thereby facilitating in-depth comparative analysis and further optimization of the scheme.
∗ To calculate the ciphertext size in this table, we set n = 160 bits, |Z∗

p| = 160 bits, |G1| = 520 bits, |G2| = 1024 bits.

TABLE II
RUNNING TIME OF CRYPTOGRAPHIC OPERATIONS

Symbol/Operation Running Time

Thash 0.05 ms

Tmul 0.45 ms

Texp 0.45 ms

Tpair 4.38 ms

B. Rating Submission

Let Raterk (k ∈ [1,m]) represent the k-th stakeholder
in the verification committee, each equipped with a pair of
public/private keys (pubKk, priKk). Upon receiving the data
evidence, Rateri (i ∈ [1,m]) reviews it and generates an
integer fi ∈ [−10, 10] based on their evaluation. A high rating
indicates superior data quality and vice versa.

If the rating scores are made public within the blockchain
network, malicious adversaries may link them to a specific
stakeholder through analysis attacks, leading to potential
privacy breaches and retaliations. Furthermore, raters might
always provide positive ratings to maintain a good reputation,
rendering the correctness verification mechanism ineffective.
Therefore, protecting rating privacy to encourage honest rating
is of great significance. We employ a symmetric homomorphic
encryption algorithm proposed in [18], to ensure both rating
confidentiality and computational efficiency. Each Rateri gen-
erates a random secret Ki ∈ Z∗

p. For instance, the encryption
of a private feedback fi is defined as:

ci = EKi
(fi) = [(fi +Ki)×MK] mod p, (5)

where EK(f) represents encrypting f with K, parameter p
is a prime, and MK is a master key. The decryption of ci is
defined as:

fi = DKi
(ci) = [ci ×MK−1 −Ki] mod p, (6)

where DK(c) represents decrypting c with K and MK−1 is
the multiplicative inverse of MK modulo p. Assuming c1 and
c2 are the ciphertexts of data f1 and f2 under the secret keys

k1 and k2, respectively. According to (5), the homomorphic
property supports direct computation on the ciphertexts as the
following equation:

c1 + c2 = Ek1
(f1) + Ek2

(f2)

= [(f1 + f2) + (k1 + k2)]×MK mod p

= E(k1+k2)(f1 + f2). (7)

Naturally, we can obtain (f1 + f2) by:

f1 + f2 = D(k1+k2)(c1 + c2). (8)

Specifically, each Rateri encrypts fi with Ki and uploads
their ciphertext ci to the mainstream blockchain mainnets.

C. Key Shares Dissemination

SCCV can simply gather
∑m

i=1 ci from the blockchain
network. However, SCCV needs the value of

∑m
i=1 fi to

calculate the average rating of the data evidence. According
to (8), we have:

m∑
i=1

fi = D∑m
i=1 Ki

(

m∑
i=1

ci) (9)

As demonstrated in (9), to compute the average rating,
SCCV needs to obtain

∑m
i=1 Ki. However, it is evidently

impractical and insecure for raters to disclose their secret keys
to the public. To solve this problem, we employ Additive Secret
Sharing (ASS) to store the secret keys privately in the verifi-
cation committee by dividing each secret key Ki, i ∈ [1,m]
into x shares. Despite being widely praised for its simplicity
and efficiency, which outperforms other secret sharing schemes
like Shamir Secret Sharing [19], ASS is deficient in robustness,
as the loss or destruction of some shares may lead to a failure
in reconstructing the secret. Therefore, we integrate (x,m)−
Reed-Solomon Codes [20], a powerful error-correcting coding
technique, to enhance the fault tolerance, scalability, and
security of ASS. Assuming that Rateri splits the secret into
x (x < m) pieces, the design details proceed as follows.
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a) Key Splitting and Encoding: Rateri selects a random
value sih as the h-th secret share of Ki, where h belongs to
[1, x). Then, we can obtain the last secret share by:

six = Ki −
x−1∑
h=1

sih. (10)

Therefore, Rateri gets x secret shares. Afterward, Rateri
encodes these secret shares through Reed-Solomon Codes and
generates m encoded shares, denoted as eil (l ∈ [1,m]). Note
that m > x, meaning that we introduce redundant information
to deal with the situation of share damage or loss.

b) Encryption and Distribution: In order to secure the
encoded shares from potential eavesdropping by other entities
within the blockchain network or external attackers, each
Rateri encrypts share using the public key of the intended
rater. In Network3, we employ the Paillier encryption scheme
[21], an asymmetric homomorphic encryption algorithm. For
example, eil is encrypted using the public key of Raterl (l ∈
[1,m]), with the result representing by EpubKl

(eil). That is,
Rateri generates {EpubK1(e

i
1), EpubK2(e

i
2), ..., EpubKm(eim)}

for Ki and transmits them to the corresponding Raterl
through the mainstream blockchain network. It is noteworthy
that each rater will receive a total of m encrypted encoded
shares from the other raters along with his own part, and the
dissemination of one secret only needs to conducted once.

D. Key Reconstruction

Leveraging the additive homomorphic property of Paillier
encryption, the encrypted shares corresponding to Raterl can
be multiplied together, which is equal to the encryption result
of the summed encoded shares, as shown below:

m∏
i=1

EpubKl
(eil) = EpubKl

(

m∑
i=1

eil). (11)

Therefore, Raterl can obtain
∑m

i=1 e
i
l through an asymmetric

decryption operation using priKl.
Subsequently, each rater independently decrypts the prod-

uct of the encrypted encoded shares EpubKl
(
∑m

i=1 e
i
l) using

their secret key priKl and forwards the result to SCCV .
Hence, SCCV obtains {

∑m
i=1 e

i
1,
∑m

i=1 e
i
2, ...,

∑m
i=1 e

i
x}.

Then, SCCV performs the Reed-Solomon decoding operation
to obtain

∑m
i=1 Ki.

The shares dissemination and secret sum reconstruction
details are illustrated in Table. III.

E. Average Rating Calculation

Afterwards, Vi calculates
∑m

i=1 EKi(fi) using the cipher-
texts gathered from blockchain. Then, it decrypts the cal-
culated sums using

∑m
i=1 Ki to obtain

∑m
i=1 fi according

to (9). Finally, the average rating result faver can be com-
puted through faver =

∑m
i=1 fi
m . The process of key sum

reconstruction and average rating computation is illustrated
in Fig. 3. It is important to note that the real identities of the
feedback providers remain confidential throughout the entire
data correctness verification process.

Fig. 3. Process of key reconstruction and average rating calculation.

F. Punishment and Incentive

If the calculated faver is less than 0, SCCV publishes
a symbol † along with the data evidence on mainstream
blockchain mainnets, indicating that the transmitted data is
incorrect. Then, the deposit of the data sender will be forfeited
at a penalty rate ηS ∈ [0, 1], which are partly distributed to the
data receiver as compensation and to the raters as verification
rewards. If the calculated faver lies within the range [0, 5],
SCCV publishes a symbol ♢, implying that the received data
are valid and correct. Otherwise, if the calculated faver falls
between (5, 10], SCCV publishes a symbol ‡, which suggests
that the received data are indisputably correct and the data
receiver is likely to have made a false complaint. In this case,
the deposit of the data sender will be confiscated at a penalty
rate ηR ∈ [0, 1], which are partly transferred to the data sender
as compensation and to the raters as verification rewards.

In addition, it is important to note that the deposit amount,
penalty rates (i.e., ηS , ηR), and incentive rewards are closely
tied to the tokenomic model of Network3. These elements are
intricately designed to ensure balanced participation, promote
honesty, and foster an environment conducive for growth and
sustained operation of the Network3 ecosystem.

G. Key Shares Update

To safeguard against privacy breaches and security threats,
Rateri should periodically update the secret key Ki (i ∈
[1,m]). However, Rateri would need to re-encrypt the rating
value each time a new key is generated, which would incur
substantial computation and communication overhead. As an
alternative, the key shares of Ki can be updated periodically
instead of generating a new secret key. Rateri selects a new
value sih for each h ∈ [1, x) and derives a new six according to
(10). Subsequently, Rateri generates m new encoded shares
utilizing (x,m) − Reed-Solomon Codes and distributes them
to the corresponding Raterl (l ∈ [1,m]). This key update
approach enhances security while minimizing overhead.
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TABLE III
SHARES DISSEMINATION AND SECRETS RECONSTRUCTION

Raters Key Shares Encoded Shares Rater1 · · · Raterm

Shares
Dissemination

Rater1
...

Rateri
...

Raterm

K1 = s11 + s12 + · · ·+ s1x
...

Ki = si1 + si2 + · · ·+ six
...

Km = sm1 + sm2 + · · ·+ smx

e1l , l ∈ [1,m]
...

eil , l ∈ [1,m]
...

eml , l ∈ [1,m]

EpubK1
(e11)

...
EpubK1

(ei1)
...

EpubK1
(em1 )

· · ·
...
· · ·
...
· · ·

EpubKm (e1m)
...

EpubKm (eim)
...

EpubKm (emm)

Secrets
Reconstruction ——

Based on ASS and Reed-Solomon Codes
⇓∑m

i=1 Ki =
∑m

i=1

∑x
h=1 s

i
h =

∑x
l=1

∑m
i=1 e

i
l

Based on the
homomorphic property

⇓∏m
i=1 EpubK1

(ei1)=
EpubK1

(
∑m

i=1 e
i
1)

· · ·

Based on the
homomorphic property

⇓∏m
i=1 EpubKm (eim)=

EpubKm (
∑m

i=1 e
i
m)

IV. ANONYMOUS COMMUNICATION MECHANISM

With the proliferation and advancement of network tech-
nology, there is a growing emphasis on network security.
Researchers have devised numerous solutions in response to a
range of security issues. While the technology for encrypt-
ing and safeguarding communication content has matured,
securing the identities of communicating parties remains a
challenge. Critical sectors such as electronic voting, electronic
banking, e-commerce, and electronic auctions require the
confidentiality of user identities. However, existing network
protocols, including HTTP and TCP/IP, are open systems.
Eavesdroppers can easily extract crucial information from
intercepted data packets, such as IP addresses of the par-
ties, message length, packet exchange timing, and frequency.
This enables eavesdroppers to deduce user identities, and in
conjunction with other data, glean valuable insights without
accessing communication content.

In particular, contemporary cryptography conceals commu-
nication content effectively through encryption. However, it
struggles to hide the location information and communication
patterns of the sender and receiver. In other words, crypto-
graphic techniques are insufficient in preventing inference of
sender and receiver details via traffic analysis. Attackers can
leverage source and destination addresses, message lengths,
and other data, combined with eavesdropping results and traffic
analysis, to discern additional information, including address
details and communication patterns. These insights can be
partly inferred and derived from data packet control informa-
tion and characteristics. Consequently, when specific network
nodes or data transmitters and receivers handle substantial
information volumes, adversaries detecting such activity, even
without knowledge of the content, can identify active nodes.
This turns them into lucrative targets for potential attacks.

Anonymous communication aims to conceal communication
relationships within business flows without altering existing
network protocols. This ensures that eavesdroppers cannot
directly discern or deduce the communication links between
parties involved. This study initiates by examining Tor, which
is a globally well-known anonymous communication system,
and subsequently devises an enhanced anonymous communi-
cation mechanism.

A. The Tor System

The Tor anonymous communication system, often referred
to as the second-generation onion routing system [22], operates
via a network of onion routers (OR), also known as Tor nodes.
These onion routers facilitate the transfer of data from the
source to the destination. The primary objective of each onion
router is to ensure that external observers cannot correlate
input and output data. In other words, it is designed to make
it impossible for an external entity to infer the corresponding
output data packet based on its input counterpart. This feature
effectively prevents attackers from conducting communication
flow analysis.

In the Tor anonymous communication system, users seek-
ing anonymity initiate the Onion Proxy (OP) program. The
OP is responsible for establishing communication links and
encrypting/decrypting data. It begins by retrieving information
about all Tor nodes from the directory server. Subsequently,
it randomly selects a node from the pool of Tor nodes and
engages in a key negotiation process. This negotiation process
employs the short-term Diffie-Hellman key exchange protocol,
and the TLS protocol is further employed to enhance the
confidentiality of the channel and the forward security of the
information. All subsequent data transmissions occur through
this established channel.

Following this, the OP proceeds to expand connections to
other Tor nodes through the channel, exchanges keys with
them, and establishes a multi-layer encryption channel. Before
transmission, the data is encrypted by the OP in reverse order
as it passes through the Tor nodes, akin to the layers of an
onion. During the transmission process, the encrypted data is
decrypted at each Tor node, one layer at a time, until it reaches
the final node. At this point, the data is fully decrypted and
forwarded to the destination. Upon the return journey from
the destination, the data is encrypted at each Tor node and
subsequently decrypted in layers, ultimately being delivered
to the user-side application.

It is important to note that each Tor node is only privy to its
own encryption and decryption keys. This means that external
attackers and even colluding Tor members would be unable to
access the plaintext of communication data unless they manage
to obtain the keys of every Tor node within the communication
path. Unlike traditional anonymous communication systems,
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Fig. 4. Alice builds a two-hop circuit and begins fetching a web page. (cf. [22])

Tor does not employ precise mixing techniques, such as data
batching. Instead, it stores data packets to be transmitted
in the cache of their respective streams. Data packets are
circulated among various streams in a round-robin fashion.
This ensures equitable forwarding of all connected data. When
the cache of a particular stream becomes empty, the system
skips that connection and proceeds to forward data from the
next available non-empty connection cache. Tor prioritizes
low latency and refrains from employing traditional packet
operations such as delaying, reordering, batching, or padding
discarding.

Figure 4 provides a visual representation of Alice’s process
in establishing a two-hop circuit and initiating the retrieval of
a web page through Tor. For a more comprehensive under-
standing of this process, interested readers are encouraged to
consult the detailed information available in [22].

B. The Optimized Mechanism

Indeed, a fundamental weakness is discernible within the
Tor system: the entry node becomes privy to the identity
information of the anonymous communication initiator, while
the exit node gains access to the identity information of
the anonymous communication recipient. Consequently, the
aspiration for complete anonymity remains unrealized. To
address this predicament, we present an optimized anonymous
communication system solution, guaranteeing the security of
both the sender and receiver in the anonymous communication
system without substantial increase in communication latency.

1) Crowds Anonymous System: Crowds [23] is a commu-
nication system that ensures sender anonymity by employing
a unique concept - the idea of “blending into a crowd”. In
essence, it establishes a collective of numerous anonymous
users, with the anonymous sender concealed among these
group members. Each member within the group acts as a

proxy. When a member intends to initiate anonymous com-
munication, they send a request to other members. Upon
receiving the request, the member can opt to either directly
forward it to the destination node or relay it to other members.
This approach provides protection for the sender while also
safeguarding the anonymity of other members.

To illustrate the process, every host under anonymous
protection runs a program known as the Jondo agent. Within
this agent, they specify the host name and port number in
their browser, designating Jondo as the HTTP proxy. Jondo
then obtains the list of system members from the system
management node known as the “blender”. When a browser
request is initiated, it is first directed to the local Jondo. This
local Jondo performs a coin toss to determine whether to send
the request to the destination or forward it to the next Crowds
node. If it is sent to the destination, a connection is established
accordingly. In cases where it is forwarded to the next node,
the local Jondo randomly selects a Crowds member from the
list, establishes a connection with them, and forwards the
request. The process is repeated with each subsequent Crowds
node. This series of coin tosses continues until the request
ultimately reaches its destination.

In the Crowds anonymous communication system, connec-
tion establishment eschews traditional public key encryption,
instead utilizing the symmetric key unique to each Jondo
node. These symmetric keys are acquired from the “blender
server”. Owing to the absence of public key operations, the
Crowds system boasts notably low communication latency.
However, its security level does not match that of public key
encryption-based anonymous communication systems. This
system is primarily designed for web browsing. The Crowds
system improves its anonymity as more users join the network.
The author has demonstrated that as the number of users,
denoted as n, approaches infinity, the Crowds system can
achieve near-perfect anonymity regardless of the presence of
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local eavesdroppers, Crowds conspiracy attackers, or target-
end attackers.

2) Multicast Mechanism: Multicast communication plays a
pivotal role in facilitating one-to-many communication among
hosts over the Internet. It distinguishes itself from unicast
communication by addressing a group of hosts as opposed to
a singular, specific host. By harnessing broadcast or multicast
technology for data transmission, the recipient can effectively
blend into the multicast or broadcast group, thereby ensuring
the anonymity of the receiver.

Here’s how it works: When there is a message to be
dispatched to a host group, multicast simplifies the process.
The sending host merely transmits the message, and all hosts
belonging to the same group can receive it. Within the multi-
cast paradigm, each host group comprises a collection of zero
or more hosts, each identified by a unique Class D interface
address. To facilitate this, hosts employ the Internet Group
Management Protocol (IGMP) to notify their local router of
their intent to join and receive data from a particular multicast
group. Routers also periodically query the LAN to ascertain
the activity status of known group members through the IGMP
protocol.

Multicast routing mechanisms predominantly employ a
distribution tree structure. This entails the establishment of
a distribution tree connecting routers, linking the sending
host with all intended receiving hosts. Multicast messages
traverse this distribution tree, creating duplicates at the branch
nodes. Notably, within the multicast paradigm, individual real
nodes remain oblivious to the specifics of multicast group
members. Consequently, it becomes exceedingly challenging
for attackers to gain access to information regarding all routers
within the multicast tree. This intrinsic feature bolsters the
security of multicast communication. Note that more nodes
in a multicast group would lead to stronger anonymity. The
number of nodes included in a group is a customized parameter
instead of a fixed system integer.

3) Proposed Mechanism: In this system, when a user
wishes to send a message anonymously, they initiate a series
of steps. Firstly, the user launches the OP program and selects
a Tor node. Subsequently, the user activates their personal
Jondo Agent program and employs a data packet forwarding
strategy akin to that of Crowds, thereby achieving sender
anonymity. The core structure of the forwarding network still
leverages Crowds, although it avoids the adoption of a fully
random routing selection strategy. The randomness in Crowds
path selection could lead to excessively long paths, resulting
in undesirable communication delays. To mitigate this, the
system imposes a constraint on the maximum path length.

The primary objective of the forwarding network is to mask
the sender’s identity, thereby concealing the genuine com-
munication users amidst numerous anonymous user groups.
This objective is congruent with the principles of Crowds.
However, owing to the security limitations of Crowds, it was
initially designed exclusively for web browsing. In Network3,
the forwarding system harmonizes with Tor and encompasses
all the network functionalities that Tor offers. The visual
representation of this approach is depicted in Figure 5.

When anonymous users desire to initiate an anonymous

connection, the sequence of actions unfolds as follows: the
user launches the OP program, selects a Tor node, and initiates
the Diffie-Hellman handshake protocol, as shown in Figure 4.
Following this, the user initiates their personal Jondo Agent
program, resulting in the establishment of a path. The path
length is randomized but constrained by a specified maximum
path length, while the member selection strategy adheres to
randomness.

The path selection process in the Jondo program incor-
porates two crucial parameters: the forwarding probability
denoted as Pf and the maximum path length N . Pf serves
as the threshold value used to decide whether to forward data
or submit it. N , on the other hand, dictates the maximum
path length and is a random integer generated by the sender’s
Jondo program, varying between 3 and 8. Once Pf and N are
determined, the user initiates a coin toss, generating a random
probability value between 0 and 1. If this value is less than
Pf , a Jondo is randomly selected as the next hop node, and
the maximum path length N decreases by 1. The data is then
transmitted to the selected next hop node, which checks if the
received N value is greater than 0. If N is greater than 0,
the coin tossing process continues. If N equals 0, the routing
process concludes, with this node becoming the final node in
the forwarding network. During the coin tossing process, if
the random value exceeds Pf , irrespective of N , the routing
process ends, and the data is submitted to the relay network.

This process continues until the exit node of the relay
link dispatches the data packet to the multicast group where
the intended recipient is located. The data is disseminated in
multicast format, signifying that each group member receives
the data packet. However, only the recipient in possession
of the decryption key can open it, thereby ensuring receiver
anonymity.

The introduction of the maximum path length during the
path establishment process serves to circumvent excessively
long paths, which could lead to unwarranted communication
delays. Randomization plays a pivotal role in preserving
system security by preventing the forwarding node from
discerning whether it functions as the initial forwarding node.
Once the link within the forwarding network is established,
it assumes the sole responsibility of data forwarding. In
contrast, relay network manages network congestion control,
data integrity verification, and forward security, among other
functions.

The proposed structure is illustrated in Figure 5, with S
symbolizing the sender and R representing the receiver. Sender
S1 encrypts the data with the public key of receiver R1 and
then proceeds to distribute it randomly within the group to
which S1 belongs. Once the data reaches S4, it is handed
off to the relay network, making its way through the network
until it reaches the link’s end. The exit node subsequently
transmits the data packet to the multicast group containing
receiver R1. All users within this multicast group receive
the packet, but only R1, who possesses the private key to
decrypt it, can access its contents. All other users can merely
discard the encrypted packet, thereby ensuring the privacy of
the communication.
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Fig. 5. Network3 Anonymous Communication Mechanism

C. Security Analysis

This system inherits all the robustness against attacks that
the Tor anonymous communication system offers. It combines
the advantages of Tor and introduces two added layers of
security due to its hybrid nature. In the context of attacks,
this system is more resilient because it is challenging to
conduct a complete communication flow analysis by focusing
solely on Tor or the forwarding network. The hybrid system
presents a higher level of security. When an attacker targets
relay or the forwarding network, they can only infer limited
information; for instance, an attack on Tor may reveal the
sender’s identity, but the receiver’s anonymity remains intact.
Similarly, attacking the forwarding network solely reveals the
sender’s identity but doesn’t compromise the anonymity of the
receiver. As long as the blender node’s security is maintained,
the user’s selection of forwarding users remains entirely ran-
dom, ensuring the entire communication’s security. As shown
in literature [23]–[25], this system is proven to be secure,
guaranteeing the overall anonymity of the communication.

• Low Latency: The implementation of the forwarding
network is efficient and straightforward. Data link estab-
lishment and data forwarding occur at high speed because
they use symmetric keys. The primary factors affecting
latency are network bandwidth and congestion. The relay
network employs congestion control algorithms and token
bucket strategies to ensure network robustness, making
the hybrid system achieve very low communication de-
lays.

• Data Security: In Crowds, any forwarding node can
access plain text communication, leaving data security
uncertain. In the proposed system, all data in the for-
warding network are encrypted by the OP, ensuring data
security. It also enables data integrity verification and
forward security.

• Local Eavesdropping: Local eavesdroppers can only
observe communications of local users. However, the
anonymity of the receiver is maintained because data
is disseminated in multicast mode. Local eavesdroppers
cannot access any information about the receiver.

• Multicast Group Eavesdropping: Eavesdroppers within
the multicast group may receive the data packet, but it
remains encrypted. Only the recipient with the decryption
key can access the plain text data. Moreover, the sender’s

anonymity is preserved since data packets are forwarded
within Crowds, making it difficult for eavesdroppers to
ascertain the sender’s information.

V. EDGE COMPUTING-DRIVEN OUTSOURCED
COMPUTATION

To address the challenges stemming from the inherent
limitations of terminal equipment (such as mobile phones,
wearable devices, .etc), characterized by finite computational
resources and incapacity to execute intricate operations ef-
ficiently, the integration of a distributed edge computing
framework emerges as a sophisticated and technically potent
solution. The implementation of this framework strategically
aims to mitigate user computing thresholds, abate protocol
execution delays, enhance operational efficiency, and fortify
architectural scalability. This section elucidates the technical
intricacies and principles underlying this innovation, under-
scoring its pertinence in the context of modern distributed
systems.

At the core of our approach is the selective offloading
of computationally intensive tasks, notably the signcryption,
signature verification, key encryption, and other computation-
intensive processes, to edge servers. These edge servers are
judiciously chosen due to their substantial computational
prowess. By relocating these high-resource-demanding tasks,
our framework ameliorates the computational burden on the
terminal devices, which, given their constrained resources,
would otherwise grapple with the onerous demands of these
operations. This offloading paradigm substantially ameliorates
the overall computational costs associated with terminal de-
vices, contributing significantly to the optimization of opera-
tional performance.

The edge server assumes a pivotal role within this architec-
ture. It takes on the responsibility of executing computation-
ally intensive operations offloaded from the terminal devices.
This strategic distribution of computational tasks across edge
servers not only guarantees the efficient execution of these
operations but also elevates the architecture’s robustness. The
crux of this approach hinges on the notion of outsourced com-
putation, a concept characterized by the seamless delegation
of specific tasks to edge servers.

Outsourced computation is not merely a delegation of
tasks; rather, it constitutes a nuanced process characterized by
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secure computation, data confidentiality, and integrity. When
a terminal device or user necessitates the execution of com-
putationally demanding operations, the system orchestrates
the allocation of these tasks to specific edge servers selected
based on their computational prowess. The process adheres
to stringent security protocols to ensure the confidentiality
and integrity of the data, even in the midst of computations
performed on edge servers.

The synergistic interplay between edge computing and
outsourced computation is the hallmark of our innovative
framework. This symbiotic relationship is predicated on the
judicious utilization of computational resources, stringent se-
curity protocols, and the meticulous orchestration of task
offloading. It not only surmounts the computational constraints
posed by terminal equipment but also fosters an architecture
that is inherently resilient, scalable, and primed for optimum
performance.

VI. DECENTRALIZED FEDERATED LEARNING
FRAMEWORK

We introduce a novel decentralized anonymous transmission
protocol in the preceding section, emphasizing its significance
within the context of our broader exploration of AI-enabled
intelligent computing. This facet is integral to the envi-
sioned Web3 paradigm, which, in its truest form, champions
openness, decentralization, self-motivation, and diversification.
Presently, AI advancements are predominantly governed by in-
dustry giants like Google and OpenAI, relegating the majority
of users to passive roles. This misalignment with the principles
of Web3 or Depin prompts us to address this issue head-on.
Consequently, in the ensuing sections, we present a pioneering
decentralized federated learning framework. This framework is
designed not only to rectify the current landscape but also to
infuse greater intelligence into the evolving DePin ecosystem.

A. Background and Motivation

With the swift advancement of intelligent applications fu-
eled by extensive data, there has been a substantial enhance-
ment in the efficiency of various aspects of human life and
production. However, this progress has given rise to heightened
discussions and apprehensions concerning data security and
privacy. Particularly, in scenarios where data producers are
dispersed across heterogeneous networks, the effective and
judicious management of this distributed data has emerged as
a pressing challenge in the realm of artificial intelligence. This
is underscored by the dual imperative faced by big data service
providers: the need to deliver efficient intelligent services
while respecting user privacy concerns. Google addressed this
conundrum by pioneering the federated learning framework
(FL) in 2016 [26], [27].

FL, a distributed machine learning paradigm, offers a solu-
tion to the challenge of data islands in the big data landscape.
It enables the preservation of data privacy by facilitating col-
laborative data sharing and machine learning modeling across
multiple terminals. In the FL framework, individual distributed
devices conduct local model training without the necessity of
uploading private data to a central server. Instead, they transmit

concise model update information. The central server then con-
solidates this update information, orchestrates the optimization
of a global model, and subsequently redistributes the optimized
model to each device for the subsequent round of training
[28]. This technical breakthrough effectively dismantles data
islands, enabling the proficient sharing and utilization of vast
user data. Federated learning has thus garnered considerable
attention from both academia and industry.

While federated learning (FL) introduced a groundbreaking
privacy-preserving approach to distributed model training in
the AI community, the current FL framework confronts a
spectrum of formidable challenges.

• Firstly, the presence of a centralized model aggregator
in traditional FL frameworks poses considerable security
risks, including susceptibility to single-point attacks and
privacy breaches. This renders it unsuitable for large-scale
decentralized environments like DePin.

• Secondly, the vulnerability to malicious attackers, who
can masquerade as local trainers or global aggrega-
tors, raises the specter of compromised model accuracy
through the uploading of fake model updates.

• Thirdly, the diverse roles within the FL framework, en-
compassing local trainers, verifiers, and aggregators, lack
an effective and customized incentive mechanism. This
deficiency diminishes the willingness of participants to
contribute their computing power and network bandwidth
to the iterative processes.

• Lastly, the large size of model updates/parameters and
model dissemination results in substantial communication
costs and synchronization latency.

These challenges have assumed heightened significance as
FL is increasingly considered the most promising technology
for establishing a decentralized machine learning architecture.
This architecture not only facilitates privacy-preserving model
training using the heterogeneous computing power of myriad
intelligent devices but also addresses the challenges posed by
the burgeoning applications of large language models, such as
ChatGPT.

In response to these challenges, there have been note-
worthy technological solutions. Decentralized approaches to
model aggregation, where the responsibility for aggregation
is distributed across multiple entities rather than relying on a
single centralized aggregator, have been explored to mitigate
the risk of single-point attacks [29]–[31]. Cryptographic tech-
niques, such as secure multi-party computation (SMPC) and
homomorphic encryption, are being employed to enhance the
security of the model aggregation process and protect against
privacy breaches. Robust mechanisms for detecting and miti-
gating the impact of fake model updates have been proposed,
leveraging anomaly detection and reputation systems.

However, despite these advancements, there remain gaps
and limitations. Ensuring the reliability, scalability and ef-
ficiency of decentralized model aggregation methods is an
ongoing area of research. Robustness against sophisticated
adversarial attacks and the development of adaptive incentive
mechanisms that account for the dynamic nature of FL frame-
works are active areas of exploration. Moreover, addressing the
communication costs and synchronization latency associated
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with unpredictable model updates is critical for the continued
success and adoption of federated learning.

In our project, we present a groundbreaking decentralized
FL framework designed to effectively tackle the aforemen-
tioned challenges. In essence, our solution incorporates several
key innovations. Firstly, we integrate layer-2 blockchain tech-
nology to decentralize the FL processes, mitigating security
risks associated with centralized models. Additionally, we
introduce an asynchronous local parameter verification mech-
anism to enhance the robustness of local computations. To
further bolster the integrity of the model, a global model ver-
ification mechanism is implemented. Our framework also in-
troduces a proof-of-contribution consensus, providing a much
more efficient foundation for FL operations. Building upon
this consensus, we devise an adaptive incentive mechanism
tailored to engage and motivate all participant types in the
FL ecosystem. This multifaceted approach aims to not only
overcome the limitations of traditional FL frameworks but also
establish a more secure, efficient, and participatory paradigm
for decentralized machine learning.

B. Overall Framework and Processes

1) Notation Description: Network3 employs a specified
number of iteration cycles to update the FL global model.
Each cycle consists of five key components: model training,
local parameter verification, aggregation, global parameter
verification, and block generation. The iteration cycle set is
represented by R = {1, 2, . . . , j} (j ∈ N+), where |R|
serves as a hyperparameter indicating the maximum number
of iteration cycles required for model convergence in FL.

The participating nodes are represented by the set N =
{n1, n2, ..., ni} (2 ≤ i ≤ k), where k denotes the total number
of nodes in the system. At the commencement of the j-th
round of iteration, all nodes are divided into four different
roles based on their historical contributions (|T |+ |E|+ |A|+
|G| = |N |). These roles include trainers T = {t1, t2, ..., tx}
(0 < x < k − 3) responsible for training local models,
local validators E = {e1, e2, ..., ey} (0 < y < k − 3)
who assess the model parameters sent by trainers, aggregators
A = {a1, a2, ...az} (0 < z < k − 3) who aggregate the
legitimate parameters evaluated by E, and global validators
G = {g1, g2, ..., gw} (0 < w < k− 3) who verify the global
parameters and generate new blocks.

In the jth iteration, Network3 coordinates all nodes to
update the FL global model, denoted as Mj . In the subsequent
iteration, Mj will serve as the local model for each node,
utilized for model training and parameter evaluation to update
Mj+1, and so on. The evaluator E needs to use the local
dataset to evaluate the model parameters sent by the trainer
T . In the j-th iteration, the evaluation result of ey for tx
is represented by the voting value vj(y, x), which is sent
to aggregators for final verification. For each trainer tx, the
aggregator needs to collect and aggregate all evaluation results
vj(y, x) related to tx. The evaluation results will ultimately
determine whether the model update uploaded by tx can
pass the verification. In Network3, the blockchain saves the
cumulative rewards obtained by each node, referred to as its

contribution. The contribution of node ni at the beginning of
the j-th round is represented by Cj

i . If node ni is elected in
this round as the evaluator, then its contribution Cj

i will be
used as the voting weight in the verification period.

2) Framework Overview: As illustrated in Figure 6, the
proposed framework involves five distinct types of partici-
pants. First and foremost, the task publisher, desiring to train
an application-specific ML model, releases task descriptions
onto blockchain. These descriptions encompass data require-
ments, convergence demands, rewards, and other pertinent
details. Additionally, he/she provides the initial model. Smart
contracts are pre-deployed to facilitate task selection, role
assignment, and model distribution to trainers. The trainers
T use their private dataset to train the local model and sub-
sequently upload the trained model parameters to evaluaters.
The local evaluator E are responsible for evaluating the model
parameters uploaded by the trainers. The aggregators A play
a crucial role in aggregating all legal parameters. The global
validators G verify the validity of the global model and
generate new blocks.

AI data annotation is a crucial step in the data preprocessing
phase, as supervised machine learning models rely on anno-
tated data to recognize recurring patterns. The algorithm, when
exposed to a substantial amount of labeled data, becomes
adept at identifying similar patterns in new, unlabeled data.
Hence, data scientists leverage meticulously annotated data to
effectively train machine learning models. It is important to
highlight that, in the context of federated learning, the data
annotation process is a one-time operation executed by the
trainer on the local dataset during the initialization phase.
This process stands apart from the iterative stages of federated
learning training and inference. Consequently, we exclude the
data annotation process from the architecture’s considerations.
By default, trainers locally complete the data annotation,
utilizing the prepared dataset to train the model and acquire
local parameters. Recognizing the labeling operations’ cost for
training nodes, we incorporate the dataset size as a primary
factor when determining incentives for local trainers. A larger
dataset implies a higher labeling cost for the default trainer,
resulting in correspondingly higher incentives. This approach
ensures a balanced consideration of the resource-intensive
nature of data labeling operations in the incentivization model.

At the end of each round of global model iteration, the
adaptive incentive algorithm will allocate corresponding re-
wards according to the role and work intensity of each node,
and update their contribution. At the beginning of the next
iteration, Network3 reassigns roles to each node based on its
contribution to ensure the liquidity of nodes in the system. All
selected nodes engage in model training, parameter evaluation,
aggregation, and global validation and block generation tasks,
ensuring the timely and positive updating of the global model.

C. Local Parameter Verification Mechanism

Upon receiving local parameters P j
x from trainer tx, local

validator ey first checks the integrity and authenticity by
verifying the signature. Subsequently, ey broadcasts P j

x to
other local validators. Then, ey queries a hash table HT on the
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Fig. 6. Processes of the proposed decentralized FL framework

blockchain to confirm whether P j
x has passed the verification.

Concretely, the parameters are considered successfully verified
if HT (P j

x) ≥ 0.5. If the verification is successful, ey will not
continue to process the parameters. However, if the verification
fails, the local dataset is employed to perform the parameter
evaluation process. In this case, the evaluator only needs to
use the private dataset to train the local model for one epoch,
simulating the reasonable decline expected from a legitimate
trainer after using the local dataset to train the global model.
Finally, the evaluator ey will send the evaluation results to the
aggregators in the form of a voting value vi(y, x).

Aggregators maintain a hash table HT that stores the
local parameters uploaded by local trainers. If the current
number of positive votes exceeds half the number of local
validators, subsequent evaluation processes will be unneces-
sary. For example, for trainer tx, the following verification
results are equal in HT : HT (P j

x) = {True, True} and
HT (P j

x) = {True, True, False}. In order to improve the
efficiency and robustness of local parameter verification, we
design different voting weights for each evaluator based on
their historical contribution. Through reliable records stored
on the blockchain, the voting weight of evaluator ey will be
calculated by his/her contribution Cj

y . This mechanism ensures
that malicious nodes always maintain a lower voice in the
verification period. The final verification result depends not
only on the number of favorable votes but also on the historical
contribution of the evaluator, further reducing the probability
of successful attacks on local validators. Specifically, the
aggregators use the following formula to determine whether

the model parameters uploaded by the trainer can pass the
legality verification:

HT (P j
x) =

exp(Cj
y + β) · vj(y, x)∑|E|

i=0 exp(C
j
i + β)

+HT ′(P j
x) (12)

We use a normalized exponential function to quantify the
evaluater’s recognition of the parameters uploaded by the
trainer. The hash table HT (P j

x) stores the verification results
of the parameters P j

x uploaded by the trainer tx. The ag-
gregator updates HT (P j

x) with the votes vj(y, x) collected
in this round and the contribution Cj

y of the evaluator to
which the vote belongs. Formula 12 describes the specific
update method, where HT (P j

x) and HT ′(P j
x) represent the

aggregator’s verification results before and after updating the
model parameter P j

x respectively. β is a hyperparameter used
to address the issue of variable memory overflow caused
by excessive contribution in the middle and late stages of
operation. After completing the update, the aggregator deter-
mines whether P j

x passes the verification based on the updated
HT (P j

x): if HT (P j
x) ≥ 0.5, the majority of legal evaluators

have recognized the model update parameter P j
x uploaded by

trainer tx in this round; otherwise, the aggregator refrains from
using local parameters P j

x to update the global model during
this iteration.

D. Global Model Verification Mechanism

After aggregating local parameters into global model, the
aggregators transmit the global model to the global validators
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Fig. 7. PBFT consensus process

committee. After a certain number of global gradients are col-
lected, the leader of the PBFT verification committee initiates
verification of the global gradients in a certain order. Each
global verifier votes yes or no for the global gradient based
on the Krum algorithm [32]. and the first global gradient to
receive more than 2/3 of the verifier’s yes votes is selected
as the global gradient for this iteration, and the validation
process ends. The process of PBFT is illustrated in Figure 7.
Finally, the aggregator whose global model is successfully
chosen perform as block generator in this interaction. He/she
will package the global parameter, the hash table HT , and the
voting queue V Q into a block and broadcast in the blockchain
network, ensuring that the global model Mj can be updated
timely and legally in each iteration.

E. Adaptive Incentive Mechanism

We propose an adaptive incentive mechanism for each type
of participants in the system based on their work intensity and
contribution.

1) Rewards for Local Trainers: The trainer plays an im-
portant role in the proposed decentralized FL system, as the
parameters from local training directly affect the prediction
performance of the global model. Given the diversity in the
quality of local data samples across nodes, updating the global
model with low-quality or maliciously manipulated model pa-
rameters may cause a serious decrease in prediction accuracy.
Therefore, the rewards assigned to trainers must be contingent
upon both the legitimacy of the uploaded parameters and the
intensity of training.

As shown in Formula 13, the expected reward obtained
by the trainer tx in the j-th iteration is calculated based
on its dataset size and the number of training rounds. Fol-
lowing decentralized parameter verification, the verification
results for the parameters P j

x are permanently recorded on
the blockchain. Therefore, whether the trainer tx ultimately
obtains its expected reward rjx depends on the legality verifica-
tion result of its uploaded parameters HT (P j

x). In Formula 13,
sx represents the local dataset size of tx, epochs represents
the number of training rounds of tx, and the reward unit r̂ is
a hyperparameter.

rjx =

{
|sx| · |epochs| · r̂, if HT (P j

x) ≥ 0.5,

0, if HT (P j
x) < 0.5.

(13)

2) Rewards for Local Validators: Decentralized parameter
verification is crucial for the reliable operation of Network3,

ensuring the benign iteration of the global model within a
certain cycle. Unlike trainers, local evaluators adopt a proxy
assessment method to evaluate received model parameters.
Evaluators only need to train a local model for one epoch
using a private dataset to simulate the reasonable decline
that a legitimate trainer would show after training the global
model with local data [33]. Additionally, the reward rjy given
to the validator ey will be based on the time sequence of
the node’s votes in the verification period. This approach not
only alleviates blockage issues in the aggregator’s parameter
verification process but also enhances the parallel efficiency of
evaluators performing cross-assessments. V Q is a queue that
stores the voting sequence of all local evaluators, maintained
by the aggregator and recorded on the blockchain. Based on
the index of the vote, ry(j) is calculated using Formula 14.

rjy =

|T |∑
i

|V Q| − V Q.FetchIndex(vj(y, i))

V Q
· |sy| · r̂ (14)

3) Rewards for Aggregators: Unlike traditional blockchain
incentive mechanisms, which involve competition among min-
ers to generate blocks, Network3 does not employ a com-
petitive mechanism among miners. Instead, at the end of
each iteration, the aggregator packages and uploads the in-
termediate results generated in that round to the blockchain.
Network gives lower rewards to aggregators, partly because
the aggregator’s task is of low workload, not involving the
training and evaluation of model parameters. On the other
hand, providing lower rewards to aggregators contributes to
maintaining liquidity among local validators. Considering that
the computational and storage costs for aggregators mainly
come from maintaining the parameter verification hash table
HT and the evaluator voting queue V Q, their rewards rja are
calculated using Formula 15.

rja = |HT | · |V Q| · r̂ (15)

4) Rewards for Global Validators: Global validators play
a crucial role in the block creation process by verifying the
global models generated by aggregators and determining the
final result by executing PBFT consensus. Therefore, they
will get equitable rewards derived from the tokens generated
during the creation of a new block in the blockchain network.
The concrete amount relies on the tokenomic design and the
number of validators in the PBFT committee, as depicted in
Formula 16.

rjg = R/m, (16)

where R denotes the corresponding value of the rewarded
token and m represents the number of global validators.

F. Future Directions

1) Zero Knowledge Machine Learning: Zero-knowledge
proofs, a branch of cryptography, have seen significant devel-
opment in recent years, especially in the field of blockchain. In
Layer1, zero-knowledge proofs can be employed for scalabil-
ity and privacy protection. Layer2 can utilize zero-knowledge
proofs to interact with Layer1, ensuring transaction security
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while enabling off-chain computation to reduce the cost of
complex calculations.

Zero-knowledge proofs [34] allow users to prove knowledge
or possession of information without revealing the actual infor-
mation. The Prover uses system-inputted information to create
a proof, and the Verifier validates the computational result of
the proof without gaining knowledge of the specific content
of the information. Additionally, zero-knowledge proofs can
verify the validity of a dataset while simultaneously protecting
data privacy. These characteristics can be applied to safeguard
the security and privacy of machine learning.

However, the computational cost of generating zero-
knowledge proofs is extremely high. Despite the rapid de-
velopment of hardware acceleration technologies for zero-
knowledge proofs, it is still far from sufficient to meet the
validation computation needs of the machine learning training
process. Therefore, our priority is to first complete the simple
validation and architecture design of distributed federated
learning on the network3 platform. We then plan to incorporate
zero-knowledge proofs into the model’s inference process.The
future challenge for zero-knowledge proofs in our system is to
enable secure usage of models by individuals using machine
learning without revealing the model’s content. This is crucial
for protecting data privacy when dealing with sensitive data.
Current zero-knowledge proofs can achieve privacy-preserving
solutions, including model privacy, data privacy, and transpar-
ent verification in privacy computation scenarios [35].

Security requirements for machine learning models include
confidentiality, integrity, and availability [36]. Confidentiality
ensures that unauthorized users cannot access sensitive infor-
mation in the machine learning system, including both training
data and information related to the model’s architecture and
parameters. Integrity demands that the model’s predictions
adhere to the expected outcomes, and availability requires the
machine learning system to provide normal services even when
faced with abnormal or malicious inputs.For model users,
they expect the models provided by service providers to be
as desired, the training results to be accurate, and their data
privacy to be protected. For model providers, they wish to
safeguard their models from being known by others in their
entirety and to be protected against malicious attacks from
users.

Zero-knowledge proofs can play a significant role in meet-
ing the security and privacy requirements of machine learning.
The use of zero-knowledge proofs in machine learning is
commonly referred to as ZKML (Zero Knowledge Machine
Learning). ZKML is essentially divided into zero-knowledge
during the model training process and zero-knowledge during
the model usage process [37]. In the realm of zero-knowledge
during the model training process, Gensyn [38] has gained
notable attention. Their primary focus is on designing a proba-
bility auditing system based on gradient descent. They employ
model checkpoints to enable a distributed GPU network to
provide training services for full-scale models. However, we
believe that using zero-knowledge proofs to monitor the cost
of model training is currently impractical. At least for now,
the computational complexity and cost of zero-knowledge
proofs fall far short of meeting the demands of real-world

production environments. Therefore, our focus is centered on
implementing a system for distributed federated learning using
a straightforward verification process, while incorporating the
use of zero-knowledge proofs in the model usage phase.

The implementation approaches for ZK proof systems in-
clude ZK-Circuit and ZKVM. ZK-Circuit functions by directly
transforming a program into constraints and feeding them into
the proof system. On the other hand, systems based on ZKVM
execute programs using an Instruction Set Architecture (ISA),
generating an execution trace in the process. This execution
trace is then mapped into constraints and submitted to the
proof system. ZK-Circuit exhibits notable performance advan-
tages and is more concise, while ZKVM is more developer-
friendly, as developers are not required to have an in-depth
understanding of each constraint condition.

For ZK-Circuit, the Modulus Labs team recently published
a paper titled “The Cost of Intelligence” [39], in which
they conducted benchmark tests on existing zero-knowledge
proof systems with various model scales. They compared six
zero-knowledge proof systems: Groth16, Gemini, Winterfell,
Halo2, Plonky2, and zkCNN [40]. Currently, proof generation
using systems like Plonky2 on powerful AWS machines takes
approximately 50 seconds for models with around 18 million
parameters.The paper ultimately guides them to choose the
GKR scheme as the optimal ZKML verifier. While they
acknowledge the effective result verification achieved by the
zkcnn scheme, they highlight that the communication overhead
of GKR should not be overlooked, considering it is the only
interactive scheme among the options. In their paper, Modulus
appears to have optimized the commitment scheme signifi-
cantly, greatly reducing communication costs. This suggests
that the GKR scheme is a reasonable choice as the best
solution for ZKML.

We will also investigate how to use zkcnn’s scheme in
future model result validators, but we will focus on completing
layer2 which provides routing and arithmetic. existing ZKVM
has reached the condition of satisfying simple production
environments, and most of ZKVM achieves O(1) time com-
plexity for result validation. for the zk validator we will
choose the DelphinusLab’s zkwasm [41]. zkwasm is based on
ZKSNARK, is non-interactive, has negligible communication
overhead, and has negligible verification complexity compared
to the complexity of the initial function, and its cost of use is
very low.

Furthermore, we have also taken note of the OP Stack Zero
Knowledge Proof scheme [42], aimed at using zero-knowledge
proofs to demonstrate the effectiveness of fraud proofs in
Optimism, thereby shortening the withdrawal window to 7
days. This approach combines the strengths of Optimism
and zero-knowledge; zero-knowledge proofs can reduce the
challenge time in Optimism, while Optimism can save costs
and overhead for zero-knowledge. The optimistic approach
holds great promise in machine learning, especially for widely
used machine learning applications like ChatGPT. Regular
users can easily bear short-term risks and are not interested in
understanding the details of the model. Moreover, compared
to ZKML, opML [43] provides low-cost and efficient machine
learning proofs. OpML has lower hardware requirements, and
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it can even run large language models on a standard PC.
2) Model Compression and Pruning: Model compression

and pruning have emerged as promising techniques to alleviate
communication overheads in distributed federated learning,
addressing the challenges posed by transmitting large model
updates over communication channels. Model compression
involves reducing the size of the model by employing tech-
niques such as quantization, which reduces the precision of
the model’s parameters, and knowledge distillation, where
a compact model is trained to mimic the behavior of a
larger model. On the other hand, model pruning focuses on
eliminating redundant or less influential parameters, leading
to a sparser model. These techniques not only facilitate faster
communication but also contribute to lower storage require-
ments, a critical consideration in federated learning scenarios
with resource-constrained devices. Key technologies in this
domain include designing efficient compression algorithms,
exploring optimal pruning strategies, and investigating ways to
balance model accuracy and size. Challenges revolve around
finding the right trade-off between model compression and
maintaining predictive performance, adapting these techniques
to diverse model architectures, and ensuring compatibility with
privacy-preserving federated learning frameworks. In addition,
instead of horizontally partitioning the data across devices,
model parallelism involves partitioning the model itself. Each
device is responsible for a specific portion of the model,
reducing the amount of information exchanged during updates.

Future research directions may explore the integration of
adaptive compression methods, leveraging insights from trans-
fer learning, and addressing the unique challenges associated
with non-IID (non-Independently and Identically Distributed)
data distributions in federated learning environments.

VII. CONCLUSION

In conclusion, Network3 presents a groundbreaking protocol
stack tailored to address the intricate challenges that have
surfaced on the mainnet. By skillfully integrating advanced
technologies, including an efficient anonymous certificateless
signcryption (CLSC) algorithm, a robust decentralized data
correctness verification mechanism, IP anti-tracking measures,
and a reliable decentralized federated learning framework,
Network3 redefines the landscape of decentralized data trans-
mission and intelligent computing.

The CLSC algorithm stands as a beacon of identity authen-
tication and secure data sharing within an anonymous realm.
Network3’s data verification mechanism provides a potent and
decentralized solution to the problem of data inaccuracies.
Moreover, the proposed anonymous communication mecha-
nism ensures a perfect anonymous pattern for Web3.0 partici-
pants. Furthermore, the decentralized FL framework addresses
the primary challenges posed by existing FL technologies,
providing a promising and practical architecture for intelligent,
secure, decentralized computing.

This protocol not only augments the capabilities of the
mainnet but also carves a path for the future of DePin
ecosystems. It enhances intelligence, bolsters anonymity, and
reinforces reliability, setting the stage for an environment
conducive to further innovation and progress.
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